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1 Introduction 
The motivation for the Model-based Integrated Simulation (MILAN) project is to 
develop an extensible modeling, simulation, and design space exploration framework for 
the design of latency and energy efficient embedded systems for signal processing 
applications. Design of embedded systems requires minimization of energy dissipation 
(to maximize battery life) while meeting a given latency constraint (typically real-time 
constraints)[14]. While until now Application Specific Integrated Circuits (ASICs) were 
considered the primary choice for low power high performance embedded systems, the 
recent advances in the design of general purpose processors (GPP), digital signal 
processors (DSP), field programmable gate arrays (FPGAs), and memories have provided 
viable commercial-off-the-self (COTS) alternatives to ASICs [26]. These devices are 
designed using low-leakage process and support a number of low power operating and 
standby states, dynamic voltage and frequency scaling, among others to support energy 
optimization. Therefore, COTS devices such as Intel PXA 255 [11], IBM PowerPC 405 
LP [9], Actel ProASIC [1], TI C5000 series DSPs [41], and Micron Mobile SDRAM [21] 
are being considered as candidate components (processing and memory) for low power 
high performance embedded design. 

However, in terms of performance and flexibility, each class of components has its own 
advantages and disadvantages. For example, an ISA-based embedded processor (GPP, 
DSP, or micro-controller) is software programmable, possibly low power, but may not 
meet the high performance needs of some signal processing application [34]. In contrast, 
FPGAs support high degree of parallelism resulting in higher performance but are not 
energy efficient and may not be suitable for control intensive applications. Additionally, 
applications also enforce specific functional requirements, which require specific 
hardware capabilities. For example, some signal processing applications exist which 
requires high precision floating-point operations [38]. Such applications require the use 
of floating-point processors, which may not be energy efficient, or software emulation on 
fixed-point processors, which may not be latency efficient. Therefore, during the design 
of low power embedded systems a number of commercial-off-the-self devices must be 
evaluated to identify the suitable hardware for a given signal processing application. With 
the availability of multiple implementation platforms such as FPGAs, traditional 
processors, and DSPs, a designer not only needs to identify suitable platforms but also 
appropriate hardware/software partitioning and mapping onto those platforms. In 
addition, other capabilities that play a significant role, especially for energy efficient 
design, are reconfiguration, dynamic voltage scaling, and choice of low power operating 
states. While minimizing energy dissipation, our focus is on maximizing battery life.  
Therefore, energy optimization with respect to the behavior of the embedded system 
while processing a single input is not adequate.  Energy models based on the processing 
of a single input do not include the behavior of the embedded system when it is idle. Due 
to quiescent power, energy dissipation when a system is idle can be significant. 
Therefore, low power embedded system design requires design space exploration based 
on duty cycle specification to identify suitable device activation schedule that meets the 
given latency requirements while minimizing energy dissipation when the devices are 
active and when they are not [26].  Duty cycle is the proportion of time during which a 
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system is operated. Such specification allows modeling of a period of execution as 
alternate active and inactive phases.  Energy dissipation (e.g. due to leakage current), 
especially for systems with low duty cycle, during the inactive phases can contribute 
significantly to the overall energy dissipation of the system. Therefore, the tradeoff 
between the performance cost of shutting down and starting up a device and the 
performance cost of remaining idle needs to be considered during system design.  

algorithms

scheduling

reconfiguration voltage scaling

target
devices

degree of
paralellismlarge design

space

binding

memory
configuration

 

Figure 1: Large design space 

In the MILAN project, we focus on signal processing applications that process a stream 
of input frames while meeting a given latency constraint for the processing of a single 
frame [33]. Examples of such applications include mobile base stations for software-
defined radio, target detection and tracking systems, and space applications. We assume 
that the application logic and therefore the performance are independent of the data 
contained in the input frames.  Such signal processing applications can be modeled as 
data flow graphs [18].  A data flow graph is a directed acyclic graph where the nodes in 
the graph represent the tasks (or kernels) and the directed edges connecting the nodes 
represent the dependency (order of execution and data flow) among the tasks [19].  The 
latency (and energy) constraints are specified based on the end-to-end performance of a 
sub-graph of the complete data flow graph where the sub-graph has one source node and 
one sink node. Additional advantage of a data flow graph is that such representation of an 
application allows it to be statically scheduled using topological sort and greedy 
scheduling.  

Thus, many choices/tradeoffs are available during energy and latency efficient system 
design. However, a large number of choices during application design results in a large 
design space (Figure 1) that must be traversed efficiently to identify the designs that meet 
the performance requirements. A number of tools and simulators exist for the design of 
embedded system. SimpleScalar[36], PowerAnalyzer [31], ARMulator [4], Mambo [6], 
SimplePower [37], JouleTrack [39], Xpower [44], DESERT [27] are some such tools. 
However, due to lack of a standard interface, integration of these tools is extremely 
difficult. In addition, execution speed can vary widely among these tools, which makes it 
even harder to integrate (e.g. ~ 200 kilo instructions per second for SimpleScalar and < 
10 instructions per second for FPGA simulators). Therefore, the focus of the MILAN 
project is to develop a design framework that allows integration of a variety of widely 
used simulators for candidate embedded devices through a unified interface and integrate 
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a number of simulators into the framework. In addition, the framework would be 
extensible such that additional simulators can be easily integrated. 

In order to facilitate specification of the application, target hardware, design and 
performance constraints, and integration of design tools, in the MILAN project, we have 
developed a set of metamodels (modeling paradigms). These metamodels define a 
domain-specific modeling language that is used to capture system models 
[17][18][23][27][28]. Our models capture application specifications, details of the 
candidate hardware for embedded systems, performance and design constraints, and 
deployment scenarios wrt. duty cycle specification.  Generic Model provides an 
abstraction of the embedded systems that identifies the key architectural features that can 
be exploited for performance and energy optimization [22]. These features include, 
operating states, average power dissipation in each state, and state transition costs in 
terms of latency and energy dissipation. Application model is developed by enhancing 
the data flow graphs to capture choice of implementations for each task, and state 
transitions (e.g. reconfiguration or dynamic voltage scaling) between task executions 
[18]. MILAN supports both synchronous and asynchronous data flow graphs. Such 
representation allows us to define application design problem as a combinatorial 
algorithm that can be solved in an efficient manner using e.g. dynamic programming or 
design space exploration tools such as DESERT and HiPerE. A mapping model is also 
developed to specify the mapping between the application and resource models.  MILAN 
also includes a set of models to specify hardware designs that can be used to specify 
FPGA based designs as well as generic hardware designs (not necessarily implementable 
using FPGAs) specified using HDL (hardware definition language) such as VHDL. Our 
modeling technique also allows us to develop library of models promoting reuse. 

To address the problem of efficient exploration of a large design space, the MILAN 
project has developed a hierarchical design space exploration methodology [26]. Our 
methodology consists of two phases. The first phase uses a pruning technique that 
evaluates the initial design space and prunes it to a smaller set of designs based on the 
performance requirements. The pruning technique operates on the high-level models that 
specify the target application, candidate processing devices and memories, and 
performance constraints. The second phase uses a high-level estimation tool and low-
level simulators to perform hierarchical simulation. Hierarchical simulation uses low-
level simulators to perform component specific simulations for a given design. The 
component specific estimates are combined using the high-level estimator to generate 
system-wide performance estimates for a complete heterogeneous embedded system 
based on a duty cycle specification. In our methodology, hierarchical simulation is used 
to evaluate the designs identified in the first phase. The high-level estimation tool used 
for hierarchical simulation operates at a higher level of abstraction than a typical low-
level simulator such as cycle-accurate, register-transfer level, or even instruction-set 
simulators. For example, the high-level estimation tool discussed in this thesis requires 
application input as a data flow graph, which is at a comparatively higher level of 
abstraction than say ``C" as required by SimpleScalar [36]. Through the integration of 
simulators, estimator, and pruning techniques, our methodology exploits the speed versus 
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accuracy tradeoffs to perform faster, compared to simulation only, and more accurate, 
compared to optimization techniques, evaluation of large design spaces. 

MILAN is a joint effort by the University of Southern California and Vanderbilt 
University and is supported by the DARPA Power Aware Computing and 
Communication Program through contract number F33615-C-00-1633 monitored by 
Wright Patterson Air Force Base.  

1.1 MILAN overview 
MILAN is implemented using Model Integrated Computing (please refer to [9][14][40] 
for more information).   MIC employs domain-specific models to represent the system 
being designed. These models are then used to automatically synthesize other artifacts. 
This approach speeds up the design cycle, facilitates the evolution of the application, and 
helps system maintenance, dramatically reducing costs during the entire lifecycle of the 
system.  MIC is implemented by the Generic Modeling Environment (GME), a 
metaprogrammable toolkit for creating domain-specific modeling environments [9]. 
GME employs metamodels that specify the modeling paradigm of the application 
domain. The modeling paradigm contains all the syntactic, semantic, and presentation 
information regarding the domain – which concepts will be used to construct models, 
what relationships may exist among those concepts, how the concepts may be organized 
and viewed by the modeler, and rules governing the construction of models. The 
modeling paradigm defines the family of models that can be created using the resultant 
modeling environment. The metamodels specifying the modeling paradigm are used to 
automatically configure GME for the domain.  

For the MILAN project, GME is used primarily for model-building. The models take the 
form of graphical, multi-aspect, attributed entity-relationship diagrams. The static 
semantics of a model are specified by OCL constraints [9] that are part of the 
metamodels. They are enforced by a built-in constraint manager during model building 
time. The dynamic semantics are applied by the model interpreters, i.e. by the process of 
translating the models to source code, configuration files, database schema or any other 
artifact the given application domain calls for. 

The MILAN architecture is depicted in Figure 2. The design-space of a system is 
captured by multiple-aspect, hierarchical, primarily graphical models in GME. The three 
main categories of models specify the desired application functionality, available 
hardware resources and non-functional requirements in the form of explicit constraints. 
These complex models typically specify an exponentially large design-space. However, 
only a subset of this space satisfies all the constraints. A symbolic constraint satisfaction 
methodology is applied to explore and prune the design-space. Once a single design has 
been selected, model interpreters translate the models into the input of the selected 
simulators. Simulation results need to be incorporated back in the models. For some 
simulators this will necessarily be a human-in-the-loop process, while for others the 
procedure can be automated. 
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The final component in the MILAN architecture is System Synthesis. Notice that this step 
is similar to driving simulators. Instead of targeting the execution model of a simulation 
engine, the synthesis process needs to generate code that complies with the runtime 
semantics of a runtime system. Just like there is a need to support multiple simulators, 
MILAN needs to support multiple target runtime systems.  Currently, MILAN is more 
focused on providing a simulation integration environment than providing system 
synthesis capabilities.   
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Figure 2: MILAN Architecture 
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2 Summary of Contributions 

2.1 Hierarchical Design Space Exploration 
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Figure 3: MILAN Design Flow 

MILAN is a model based integrated simulation environment for embedded system design 
and optimization through integration of various simulators and tools into a unified 
environment. Using the MILAN environment, the designer formally models the target 
application, underlying hardware, and constraints (latency, throughput, energy 
dissipation, etc.) through a graphical interface provided by MILAN. The models are 
stored in a model database. The model information is translated through model 
interpreters into suitable input formats required by the integrated simulators. MILAN 
adopts Model Integrated Computing (MIC) as the core design technology. The Generic 
Modeling Environment (GME) is a configurable graphical tool suite supporting MIC. 
GME allows the designer to create domain-specific models. A metamodel (modeling 
paradigm) is a formal description of model construction semantics. Once the metamodel 
is specified by the user, it can be used to configure GME itself to present a modeling 
environment specific to the problem domain. MILAN defines its own metamodel that is 
used to configure GME to provide the MILAN design environment. Every target system 
is specified in MILAN as a model.  Model interpreters are the software components that 
translate the information captured in the models based on the input format required by the 
integrated tools and simulators.  
 

2.1.1 MILAN Design Flow for Hierarchical Design Space Exploration 
In this section, we provide a brief overview of the MILAN design flow. The user Manual 
(see Appendix) and the tutorials (included in the MILAN software releases) provide 
additional details about the MILAN design flow. 
 
MILAN design flow consists of modeling, performance estimation, and design pace 
exploration. The user initiates the design process by modeling the application and the 
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target architecture.  Application modeling involves application specification as a data-
flow graph with alternatives. The alternatives refer to various implementation choices 
available for an application task. The functional specification of the target system 
specifies the structure of the data-flow graph and the choice of implementations specifies 
the alternatives. For multi-rate applications, while modeling an application in MILAN, 
the designer can specify the rate of execution for each application task. A rate of r for a 
task refers to one execution per r input frames. MILAN supports hierarchical modeling 
that enables hierarchical specification of the data flow graph making it easier to manage 
and analyze an application model. Functional simulation and verification may be done 
iteratively with application modeling. To enable functional simulation, MILAN supports 
generation of high-level source code in C and Matlab and integration of functional 
simulators. MILAN also supports specification of input stimulus at the source tasks and 
output processing logic at the sink tasks. These capabilities are also exploited for 
simulation using integrated simulators to estimate performance. MILAN supports both 
synchronous and asynchronous data flow graph based application modeling. For 
asynchronous modeling MILAN provides a run-time kernel for the execution of an 
asynchronous implementation. 
 
Resource modeling involves modeling of the target architecture. The modeling paradigm 
is based on the GenM and the augmented FSM model [27]. The user identifies key 
components and features of the target architecture that can be exploited for optimization 
and models them in MILAN. In addition, the user also models various states and state 
transition costs associated with different components such as reconfigurable devices, 
processors supporting DVS, and power aware memories using the augmented finite state 
machine model. 
 
Finally, the user describes possible mappings for each task alternatives and different 
performance or compositional constraints that the system needs to satisfy. A mapping is a 
relation between an application task and a processing component. Performance 
constraints are based on the latency and energy dissipation requirements given as input. 
Design constraints capture requirements of mapping and composition of components in 
case of device selection.  Constraints on composition restrict the composition of alternate 
processing components.  For example, given a set of choices that includes two traditional 
processors, one such constraint can be “a valid system may contain one of the processors 
but not both”. Before we can perform design space exploration, we need to populate the 
design space described above using the performance estimates for all the mappings 
specified in the model. MILAN is a simulator integration environment. Hence, if 
appropriate simulators are integrated, MILAN has the capability to perform automatic 
simulation (using specified implementation and sample input) and update the model for 
mapping using the simulation results.  
 
Once the complete system is modeled, the user invokes the design space exploration 
(DSE) tools. A DSE tool rapidly identifies a set of design that satisfies all the constraints. 
Currently, MILAN provides Design Space Exploration Tool, DESERT, as the primary 
DSE tool. DESERT is a constraint-based rapid design space exploration tool, developed 
at ISIS, Vanderbilt University [29]. Our experience with DESERT shows that we can 
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prune a design space with approximately 1020~1040 designs in order of minutes. DESERT 
uses symbolic methods based on Ordered Binary Decision Diagrams (OBDDs) for 
constraint satisfaction. We have also integrated other techniques based on dynamic 
programming to provide additional DSE options to the user. One such technique targets 
applications that can be modeled as a linear array of tasks. Given a linear array of tasks, 
execution cost of each task on a target reconfigurable device, and reconfiguration cost, 
the technique can identify a set of mapping with minimum latency or energy. 
 
Design space exploration techniques are optimization heuristics based on a high-level 
model of the target system. Therefore, the accuracy of the result depends on the 
assumptions made during high-level modeling. Hence, we use hierarchical simulation to 
further evaluate the designs identified by the DSE techniques (Figure 3). Hierarchical 
simulation is a design evaluation technique based on simulation of the designs. 
Hierarchical simulation implies simulation of a task or a set of tasks at different levels of 
abstraction by exploiting the availability of simulators at different levels of abstraction. 
Multiple abstraction levels make it possible to control the speed and accuracy of the 
simulation results. Such flexibility enables a stepwise refinement approach in which 
initially fast simulators are used to efficiently explore a large number of designs and later 
more accurate simulators are used to facilitate a detailed evaluation of the designs. 
MILAN facilitates hierarchical simulation through seamless integration of different 
simulators and the ability to invoke all integrated simulator from a single modeling 
environment. However, due to the complexity of the target heterogeneous systems, either 
there is a lack of appropriate system-level simulator that can simulate the complete 
system, or if such a simulator exists it is prohibitively expensive in terms of simulation 
time. High-level Performance Estimator (HiPerE) tool, currently integrated into MILAN, 
addresses both the above issues. 
 

HiPerE Interpretive
Simulators Cycle-accurate

Simulators RT-level
SimulatorsSystem-level

Estimates

Component
Specific

Estimates

 
Figure 4: Hierarchical Simulation 

Given a design, HiPerE evaluates system-level energy dissipation and latency. In order to 
provide a rapid estimate, HiPerE operates at the task level abstraction of the application. 
In addition to the task execution cost, various other aspects considered by HiPerE for 
accurate performance estimation are data access cost, parallelism in the system, energy 
dissipation when a component is idle, and state transition cost. Our results for signal 
processing applications show that HiPerE estimates are within 8% of the estimates using 
low-level simulations. HiPerE also produces an activity report that provides a coarse, 
task-level trace of execution time behavior of the application. An activity report contains 
processor specific task schedules, state transitions, and idle time or slack in between 
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executions. The user can exploit the activity report to identify bottlenecks and further 
optimization opportunities. Duty-cycle in the context of application execution refers to 
the proportion of time during which a component, device, or system is operated. Support 
for duty-cycle includes estimation of performance for a length of time or number of 
execution instances while taking into account, start up and shut down cost, idle energy 
dissipation, and rate of input. HiPerE supports performance estimation of a design for a 
given duty-cycle. Additional details about HiPerE can be found in the MILAN User 
Manual 1.1 (see Appendix) 

2.1.2 Key Ideas of Our Methodology 
 
In order to discuss our methodology, we define problem domain to refer to a class of 
system design problems. Given an application that can be modeled using a DFG and a set 
of target devices, problem domain refers to all system design problems that can be 
defined based on the application and the target devices. For example, a linear array of 
tasks and a processor that supports dynamic voltage scaling define a problem domain 
which includes the following system design problem, “identify appropriate voltage 
setting for each task such that overall energy dissipation is minimized”. Another problem 
may require minimization of energy while a given latency constraint is satisfied. A set of 
parameters are associated with each problem domain. A parameter can be a variable or a 
constant. For example, for the problem domain discussed above, some of the parameters 
are task execution cost for each voltage setting, operating voltage, voltage scaling cost, 
cost of data access due to the use of a memory, choice of memory devices, etc. Among 
the parameters, operating voltage is a variable parameter and task execution cost per 
operating voltage is constant.  For a given problem domain, there exist several 
optimization heuristics, high-level estimators, and simulators that can be used to perform 
design space exploration. We define parameter coverage as a metric to compare different 
design space exploration (DSE) techniques applicable to a problem domain. For a given 
solution, be it an optimization heuristic or an estimation/simulation tool, parameter 
coverage refers to the set of parameters that are considered by each solution while 
estimating performance or performing design space exploration.  Higher parameter 
coverage refers to a larger set of parameters and results in higher accuracy but can 
potentially be time consuming during DSE. A low-level simulator is an example of a 
performance estimation tool with high parameter coverage (e.g. SimpleScalar). In 
contrast, optimization heuristics, due to high-level of abstraction, tend to have lower 
parameter coverage. 
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Figure 5: Hierarchical Design Space Exploration 
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Given a problem domain, hierarchical design space exploration is defined as a two step 
process (Figure 4). The first step uses an pruning heuristic that generates a set of designs 
meeting the given constraints. The second step consists of a suitable high-level 
performance estimator that evaluates the performance of any design that is a potential 
solution for the given problem domain. The high-level estimator we discuss in this report, 
HiPerE, uses an interpretive simulation based approach to estimate performance. 
Therefore, the high-level performance estimator has higher parameter coverage than the 
pruning heuristic. Hence, HiPerE can cover the parameters not included in the model 
used by the pruning heuristic. As a result, our methodology can explore a larger design 
space than an optimization heuristic only DSE scheme.  Hierarchical design space 
exploration assumes the availability of appropriate simulators to estimate the model 
parameters required by the pruning heuristics and the high-level estimators. Examples of 
such parameters are the performance cost of various mappings or operating state 
transition costs etc.  Some of the parameters can also be obtained from the data sheets 
provided by the device vendors. We also assume that appropriate input such as 
implementations in scripts or languages supported by the simulators, input stimulus, and 
simulator configurations are available to perform simulation. 
 

2.1.3 Advantages of Our Methodology 
 
The primary difference between our version of a pruning heuristic and the traditional 
version is generation of a set of designs as opposed to a single optimal design. The set of 
designs consists of the designs that meet the given performance constraints. By ensuring 
that we have a set of good designs as opposed to one optimal design, we increase the 
chances of finding the optimal design from the set even when approximated high-level 
models are used. Additional details can be found in [26]. The advantages of hierarchical 
design space exploration are as follows: 
 

 robust against approximation errors due to high-level abstractions (models) used 
by the optimization heuristics 

 
 reduces the number of simulations necessary when compared against simulation 

based design space exploration 
 

 combines the speed of optimization heuristic based DSE and the higher accuracy 
and parameter coverage of simulation based DSE 

 
 designer can potentially combine different optimization heuristics and high-level 

estimators to suite the need of target application design problem domain 
 
 
Low-level detailed simulators, such as SimpleScalar and ModelSim, provide accurate 
performance estimates but are time consuming. Evaluation of a large design space, even 
of the order of 10s or 100s, can take days. Our hierarchical design methodology does not 
require simulation to evaluate the complete design space. Rather, the simulators are used 
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just to estimate performance of different mappings that are used by DESERT and HiPerE 
to perform DSE. Therefore, our methodology is significantly faster that simulation based 
DSE. In comparison with optimization heuristic based DSE techniques, due to the use of 
a high-level estimator, we support higher parameter coverage. Higher parameter coverage 
results in the evaluation of a larger design space.  This is because number of designs in a 
design space depends on the possible values of various parameters associated with a 
problem domain. For example, for the problem domain defined by an application and a 
processor supporting DVS, if the number of discrete voltage settings increases or if we 
also choose to evaluate a set of memory configurations, the size of the design space will 
grow. 

2.2 Model, Design, and Simulator Reuse in MILAN 
MILAN model database stores the models in a canonical form that provides a common 
representation for the information that are used to drive various simulators. The model 
database is the basic support for design reuse in MILAN. While designing an application, 
the designer builds models for the target devices and populates them through simulation 
results or vendor provided data-sheets. If in the future, another design exercise involved 
the some of the devices already modeled, the designer can reuse the models. The resource 
models capture various characteristics of the target devices that can be exploited to 
measure and optimize performance. They include various operating states, energy 
dissipation in each state, state transition costs, etc. This information does not change from 
application to application and hence can be reused. Besides, given an application, it is 
always modeled as a hierarchical data flow graph of the constituent tasks. The tasks 
typically are basic signal processing algorithms like matrix multiplication, FFT, matrix 
decomposition, motion estimation, and are part of many different signal processing 
applications. Therefore, the task specific information contained in the application model 
and model for mapping can also be reused. If reused, the designer does not need to 
perform simulations to populate the mapping model for these tasks. Other form of reuse 
is through the use of simulators already integrated into MILAN. Simulator integration 
depends on the underlying modeling paradigm and not on a specific model. Therefore, if 
the modeling paradigm does not change for a new application design problem, simulators 
integrated earlier are ready to use. 
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2.3 MILAN for Reconfigurable Systems 
The modeling and performance estimation support for FPGA provided in MILAN is 
based on Domain Specific Modeling [7]. The focus is on FPGA based designs for typical 
signal processing algorithms that contain loops and are data oblivious. Matrix multiply, 
motion estimation, etc. are some such examples. There are numerous ways to map an 
algorithm onto an FPGA as opposed to mapping onto a traditional processor such as a 
RISC processor or a DSP, for which the architecture and the components such as ALU, 
data path, memory, etc. are well defined. For FPGAs, the basic element is the lookup 
table (LUT), which is too low-level an entity to be considered for high-level modeling. 
Therefore we use domain specific modeling to facilitate high-level modeling of FPGAs. 
 

 
Figure 6: Domain Specific Modeling 

 
Domain-specific modeling technique facilitates high-level energy modeling for a specific 
domain. A domain corresponds to a family of architectures and algorithms that 
implements a given kernel. For example, a set of algorithms implementing matrix 
multiplication on a linear array is a domain. Detailed knowledge of the domain is 
exploited to identify the architecture parameters for the analysis of the energy dissipation 
of the resulting designs in the domain. By restricting our modeling to a specific domain, 
we reduce the number of architecture parameters and their ranges, thereby significantly 
reducing the design space. A limited number of architecture parameters also facilitate 
development of power functions that estimate the power dissipated by each component (a 
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building block of a design). For a specific design, the component specific power 
functions, parameter values associated with the design, and the cycle specific power state 
of each component is combined to specify a system-wide energy function. More details 
on domain specific modeling can be found in [7]. We have enhanced MILAN to facilitate 
modeling of FPGA based designs using the domain specific modeling technique. 

2.3.1 Modeling 
Our kernel level modeling enables specification of parameterized design for signal 
processing kernels for implementation using FPGAs.  We exploit domain specific 
modeling, a technique for high-level modeling of FPGAs, developed by Choi et al. [7].  
This technique has been demonstrated successfully for designing energy efficient signal 
processing kernels using FPGAs.  A domain refers to a class of architectures and the 
corresponding algorithms for a particular signal processing kernel. A class of 
architectures can be a uniprocessor, linear array of processors, 2-D array of processors, or 
any other class of parameterized architectures. For example, matrix multiplication on a 
linear array of processors is a domain. A model defined using this technique consists of 
RModules, Interconnects, component specific parameters and power functions, 
component power state matrices, and a system-wide energy function. A Relocatable 
Module (RModule) is a high-level architecture abstraction of a computation or storage 
module. For hardware implementations on an FPGA, a register can be a RModule if the 
number of registers in the design can vary based on algorithmic level choices. 
Interconnect represents the resources used for data transfer between the RModules. A 
component (also referred to as building block) can be a RModule or an Interconnect.  
Component specific parameters depend on the characteristics of the component and its 
relationship to the algorithm. For example, degree of parallelism, precision, size of 
internal memory (on FPGA), binding options for RModules, power states, are possible 
component specific parameters. Component specific power functions capture the effect of 
component specific parameters on the average power dissipation of the component. For 
this we assume a switching activity of 12.5%. Component Power State (CPS) matrices 
capture the power state for all the components in each cycle. For example, consider a 
design that contains k different types of components (C1,…,Ck) with ni components of 
type i. If the design has the latency of T cycles, then k two dimensional matrices are 
constructed where the i-th matrix is of size T×ni (Figure 6). An entry in a CPS matrix 
represents the power state (e.g. active or clock-gated) of a component during a specific 
cycle and is determined by the algorithm. System-wide energy function represents the 
energy dissipation of the designs belonging to a specific domain as a function of the 
parameters associated with the domain.  
 
Modeling based on the technique described above has the following advantages. 

 various parameters get exposed at the algorithm level 
 performance models for energy, area, and latency are generated in the form of 

parameterized functions 
 it is possible to rapidly estimate different performance metrics using only the 

information captured in the models 
 a parameterized model of a domain captures a set of designs (based on parameter 

values) that can be analyzed for various performance tradeoffs. 
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We provide a hierarchical modeling support to model the datapath. The hierarchy 
consists of three types of components; micro, macro, and basic blocks. A basic block is 
target FPGA specific. For example, the basic blocks specific to Xilinx Virtex II Pro are 
LUT, embedded memory cell, I/O Pad, embedded multiplier, and interconnects. In 
contrast, for Actel ProASIC 500 series of devices, there will be no embedded multiplier. 
Micro blocks are basic architecture components such as adders, counters, multiplexers, 
etc. designed using the basic blocks. In principle, there is no difference between a basic 
block and a micro block. The classification is introduced to enable logical creation of a 
basic library per device. A macro block is an architecture component that is used by some 
instance of the target class of architectures associated with the domain. For example, if 
linear array of processing elements (PE) is our target architecture, a PE is a macro block.  
 
Each building block is associated with a set of component specific parameters. Power 
states is one such parameter, which refers to various operating states of each building 
block. For example, we can model two states, ON and OFF for each micro and basic 
block. In ON state the component is active and in OFF state it is clock gated. For macro 
blocks it is possible to have more than 2 states due to different combination of states of 
the constituent micro and basic blocks. Power is specified as a function or constant value 
(in the example model, power for different components are specified as constants). 
 
In addition each block can be associated with a set of variables. Precision, depth and 
width for memory, size of register or memory are some example of variables that can be 
associated with a component. 
 

 
Figure 7: CPS matrices 

While the datapath is modeled as specified above, the model for control flow is relatively 
tricky. Our focus of the modeling and estimation capability is rapid energy, latency, and 
area estimation. Area can be estimated based on the model of the data path (sum of the 
components’ areas). In order to model the control flow we make use of CPS matrices. 
Component Power State (CPS) matrices capture the power state for all the components in 
each cycle. For example, consider a design that contains k different types of components 
(C_1,...,C_k) with n_i components of type i. If the design has the latency of T cycles, 
then k two dimensional matrices are constructed where the i-th matrix is of size Txn_i. 
An entry in a CPS matrix represents the power state of a component during a specific 
cycle and is determined by the algorithm (Figure 6). 
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However, specification of such a matrix is not easy. Hence, we take advantage of the 
typical loop oriented structures of kernels such as matrix multiply, FFT, etc. for which 
the FPGA based designs are created. If we analyze the CPS matrices, we can observe that 
another easy way to specify the same information is through a table. Such table would 
contain a number of rows where each row is a 3-tuple (component, state, #of cycles in 
this state). As we are interested only in performance estimation, this much of information 
is enough. 

2.3.2 Design Flow for Reconfigurable Systems 
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Figure 8: Design flow for Reconfigurable Systems 

As shown in Figure 7, design flow using our framework consists of 6 steps. The first 
three steps deal with modeling the kernel designs based on domain specific modeling and 
identifying design choices. The last 3 steps perform application level modeling and 
design space exploration (These steps are also described in the previous chapter). In the 
following, we discuss each step in detail. 
 

 Modeling Kernel Design (1): In this step, the designer analyzes the kernels to 
define domain specific models. The designer identifies the micro, macro, and 
library blocks and the associated component specific parameters. The model of 
the data path is graphically constructed in this step using GME. The designer can 
also specify high-level scripts for the building blocks to be used in the next step. 
In addition, CPS matrices for the algorithm are also specified. 

 Parameter Estimation (2): Estimation of the cost functions for power and area 
involves synthesis of a building block, low-level simulations, and in case of 
power, the use of confidence intervals to generate statistically significant power 
estimates. The simulations are performed off-line or, if required simulator is 
integrated, automatically using specified high-level scripts. Instead, if a library of 
models is available, the stored performance estimates are used directly.  Latency 
functions are estimated using the CPS matrices.  System-wide energy is estimated 
using the latency function and component specific power functions. 
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 Enumeration and Tradeoff Analysis (3): In this step, the designer chooses the 
candidate kernel designs that would be evaluated while designing applications. 
Given a domain specific model of a kernel, a set of designs are identified based on 
the parameter values and binding choices.  The framework also generates 
comparison graphs to compare the performance of the designs.  

 Hierarchical Data flow Modeling (4): Once, we have identified implementation 
choices for each kernel, we construct the application model as a hierarchical data 
flow with alternatives. Compound, alternative, and leaf nodes are used to specify 
the application model. The leaf nodes are also associated with FPGAs on which 
the kernel will be implemented. In addition, each leaf node is associated with 
performance estimates obtained using the high-level performance estimator. 

 Modeling Reconfiguration (5): Based on the mapping and area estimates of the 
task implementations, pseudo nodes are introduced to model reconfiguration. This 
step is automatic within our framework. The application model is analyzed using 
topological sort and for each consecutive tasks (source and destination) executing 
on a single FPGA, the application model introduces a pseudo task. Each pseudo 
task is automatically associated with a set of alternatives and design constraints 
are introduced to ensure that correct reconfiguration is chosen based on the 
choices selected for the source and destination tasks. 

 Hierarchical DSE (6): This step uses DESERT and HiPerE to explore the design 
space using the application model. DESERT applies all the performance and 
design constraints and selects a set of designs that meet the constraints. HiPerE 
evaluates the selected designs based on their performance estimates and allows 
the designer to choose the final design based on the given performance 
requirements. In the following, we discuss this step in detail. 

2.3.3 Illustrative Design Space Exploration for Reconfigurable 
Devices  

A matrix multiplication algorithm for linear array architectures is proposed in [32]. We 
use this algorithm to demonstrate modeling, high-level performance estimation, and 
performance tradeoff analysis capabilities of the design framework. Thus it uses only 
Step 1, 2, and 3 of the design flow. The focus is to generate a set of energy efficient 
designs for matrix multiply using Xilinx Virtex-II Pro.  
 
In Step 1, the architecture and the algorithm were analyzed to define the domain specific 
model. Various building blocks that were identified are register, multiplexer, multiplier, 
adder, processing element (PE), and interconnects between the PEs. Among these 
building blocks only the PE is a library block and the rest of the components are micro 
blocks.  Component specific parameters for the PE include number of register (s) and 
power states ON and OFF. ON refers to the state when the multiplier (within the PE) is in 
ON state and OFF refers to the state when the multiplier is in OFF state. Additionally, for 
the complete kernel design number of PEs (pe) is also a parameter. For N×N matrix 
multiplication, the range of values for s is 1 ≤ s ≤ N and for pe it is 1 ≤ pe ≤ N(⎡N/s⎤.) For 
matrix multiplication with larger size matrices (large values of N) it is not possible to 
synthesize the required number of PEs due to area constraint. In such cases, block matrix 
multiplication is used. Therefore, block-size (bs) is also a parameter.  
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Once the data path was modeled we generated the cost function for power and area for 
the different components. Switching activity was the only parameter for power functions.  
To define the CPS matrices, we analyzed the algorithm to identify the operating state of 
each component in different cycles. As per the algorithm [12], in each PE, the multiplier 
is in ON state for T/(⎡n/s⎤) cycles and is in OFF state for T×(1-1/ ⎡n/s⎤) ) cycles. All other 
components are active for the complete duration.  
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Figure 9: Energy, latency, and area tradeoffs 

In Step 2, we performed simulations to estimate the power dissipated and area occupied 
by the building blocks.  The latency (T) of this design using N\⎡N/s⎤ PEs and s storage 
per PE is T=(N2+2N(⎡N/s⎤) –(⎡N/s⎤) +1). Using the latency function, component specific 
power functions, and CPS matrices, we derived the system-wide energy function. 
 
Finally, we analyzed the model to identify a set of designs that provide a tradeoff 
between different performance metrics.  Figure 8 shows the variation of energy, latency, 
and area for different block sizes for 16×16 matrix multiplication. It can be observed that 
energy is minimum at a block size of 4 and area and latency are minimum at block size 2 
and 16 respectively. This information is used to identify a suitable design (block size) 
based on latency, energy, or area requirements. 
 
Figure 9 shows energy distribution among multipliers, registers, and I/O pads for three 
different designs. Design 1 corresponds to the original design described in [32] and 
Design 2 and 3 are low energy variants discussed in [12].  Using Figure 9, we identify 
that the registers dissipate the maximum energy and select them as candidates for 
optimization. Optimizations considered include reduction of number of registers through 
analysis of data movements (Design 2) and use of CLB based SRAMs instead of registers 
to reduce energy dissipation (Design 3). Details of the optimized algorithm are available 
in [12]. 
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Figure 10: Reducing energy dissipation 

2.4 Multigranular Simulation 
 
One important requirement of the heterogeneous design paradigm is the 
orthogonalization of concerns, that is to separate various aspects of design in order to 
effectively explore alternative solutions. For example, system requirement specifications 
and implementation or computation and communication are good candidate concerns that 
should be separated. In large and complex systems there is a need for modular design to 
mitigate complexity. Systems are typically designed in terms of components and 
component interactions. A component usually embodies some kind of computation and it 
has a standardized interface for communication. This helps to separate computation from 
communication and the developer can design and implement one without being 
concerned with the other. 
 
Separation of system requirements and implementation is desirable because the former 
captures the intention of the system designer and provide a high level view, while the 
latter is specific and is done at a much finer level of granularity. By capturing the 
intention separate of the implementation, the high level abstraction is preserved, allowing 
the user to specify alternate implementations for the same intent. These alternatives may 
be in the form of different algorithms to solve the same problem, a choice between 
hardware and software implementation, or a selection of programming language. 
Furthermore, implementation is a refinement of the intent and needs to be captured at 
different levels of granularity. Initially a coarse grain implementation is used for 
prototyping. This can be transformed in stages to a detailed low-level implementation 
later.  
 
By capturing alternative implementations at different levels of granularity we gain the 
flexibility of choosing the implementation according to the exact needs of the system. 
The development cycle starts from a coarse grain implementation. This is tested for 
functional correctness and is then refined to different alternative implementations. The 

18 



Final Report 

feasibility of these alternatives is explored by profiling them. This is followed by system 
simulation of a few feasible system wide implementations to validate the system with 
respect to the requirements. Simulation becomes more important as testing of these 
applications on actual hardware is expensive and time consuming, especially for 
applications implemented in hardware such as FPGAs or ASICs. 
 
The MILAN modeling language incorporates a wide variety of domain specific modeling 
concepts that as follows: 

• A separate modeling sublanguage for modeling of hardware applications that uses 
domain specific concepts such as hardware modules, ports, busses clocks and 
event triggered functions, 

• Strong data typing of communication ports for accurate simulation of data 
exchange and to catch modeling errors at design time, 

• Parameterization of components to develop generic modules for reuse, as well as 
to design a set of solutions instead of a single solution, 

• Data abstraction and information hiding to better manage complexity using 
multiple aspects of the same module, 

• Explicit designs of alternative implementations to capture design choices in order 
to better explore different solutions, and 

• A paradigm to compose hardware and software components together to facilitate 
the design of heterogeneous systems. 

 
Hierarchy in the modeling paradigm serves two purposes. First, it helps separate intention 
from implementation. Using hierarchy the system is designed according to the intention, 
that is, the high-level dataflow of the system. Then the design in refined by designing the 
modules in detail until it is low-level enough to provide an implementation. Second, it 
helps to mitigate complexity. The dataflow graph of large systems can be very complex; 
hierarchy hides data at different levels to make the systems more manageable.  
 
In the hierarchical graph representing the system, typically the lowest level modules 
contain the behavioral information. Using multi-granular simulation the user can choose 
to provide behavioral information for any module at any level of hierarchy. Thus, the user 
can simulate a system with a mixture of coarse grain and fine grain implementations. The 
code generator synthesizes the code for the system and whenever it finds a module 
marked for using the coarse grain implementation it uses that and doesn’t traverse deeper 
in that module. 

2.5 Accurate Functional Simulation 
There are two kinds of simulations, performance and functional, that are performed on a 
system under development. Performance simulators simulate the system to generate the 
metrics for system parameters such as latency, throughput, power, energy and so on, 
while the functional simulator simulates the system’s functionality. Designing an 
embedded system typically involves performing functional simulation on it before 
committing the design. A functional simulation essentially verifies the behavior of a 
system at a higher-level and helps capture the design errors and inconsistencies at an 
earlier stage before proceeding to a detailed implementation of the system. It lets the 
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designer verify a coarse-grain implementation of the system with its functional 
requirements. 
 
Accurate functional simulation of a system based on the dataflow approach that MILAN 
advocates depends on two factors: accurate functional representation of the dataflow 
components and the correct simulation of the runtime scheduler (in case of asynchronous 
dataflow). Providing functional code for the dataflow components is the users’ job. 
However, MILAN needs to schedule the dataflow graph exactly as the real runtime 
system does. 
 
MILAN supports three functional simulators: Matlab, SystemC and VHDL. The MILAN 
framework is capable of simulating both synchronous and asynchronous dataflow. 
Synchronous dataflow can be scheduled statically in compile time. MILAN uses the same 
code generator module for both simulation and system synthesis ensuring consistency. 
MILAN includes a MATLAB component that implements the same scheduling strategies 
as the runtime system. Both a simple round robin scheduling strategy and several priority 
based schemes are supported. The MATLAB environment provides the same simulation 
results as the final target system for the same models and the same conditions provided 
the component implementation are identical. 
 
The design of functionality implemented in hardware is captured using an intuitive 
graphical language supported by MILAN. The entire system’s description in VHDL 
and/or SystemC is automatically generated from them using a model-interpreter. It also 
facilitates the automatic generation of data type package, glue code, clock code, and 
parameters from the application models. Furthermore, the generated VHDL descriptions 
are in conformance with the IEEE Std 1076-1993 standard of the VHDL. Any simulator 
compatible with this standard can be used to compile the generated code and simulate it. 
 
Furthermore, different simulation modes are also supported. In order to simulate a 
module in isolation, the module needs to be driven by sourcing functions and the output 
of the module needs to be sent to sinking functions. In MILAN we allow the user to 
capture the exact sourcing and sinking function associated with each communication port.  
Hence, to synthesize code for an isolated simulation of a module, the true implementation 
of the module in question is used along with the sourcing and sinking functions from 
adjacent modules. The interpreter generates code of the module in question and creates 
sourcing and sinking modules for it. Isolated simulation can be performed not only on a 
single module, but also on a subgraph and the modules adjacent to this graph will be used 
to supply and consume data.  
 
For a complete simulation of the entire system a single design needs to be chosen. The 
user can choose between alternative implementations by marking one of various 
alternative implementations to use. Alternatively, the design-space exploration tool can 
identify the point designs that satisfy the all constraints and mark the selected alternatives 
automatically. The interpreter then traverses through the models and picks up the chosen 
alternative implementations to form a single design. The true implementations of the 
design are then used to generate Matlab, VHDL or SystemC code for a full simulation.  
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To simulate hardware in a heterogeneous system, it is necessary to facilitate 
communication between hardware and software components. In a real-world system, 
hardware-software interactions are facilitated using device drivers. However, MILAN 
does not require device drivers to simulate the system. The communication is achieved by 
using entities called proxies. At a hardware-software interface, proxies are generated on 
both sides. For example, a hardware proxy will read data from the hardware module at 
the interface and pipe it to its software counterpart using TCP. Similarly, it will read data 
from the pipe and provide it to the hardware module. The software proxy does the same 
at the other end. The interpreter breaks the heterogeneous graph into hardware and 
software graphs. It then generates the proxies and connects the respective graphs at the 
interface. Finally, the two graphs are sent through their respective interpreters. The 
hardware and software code can finally be compiled independently and then run together 
to simulate the hardware. 
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3 Lessons Learned 
The MILAN project studied several key phases required for energy and latency efficient 
application design using embedded systems. We discuss a number of lessons learned in 
this chapter. 

3.1 Application modeling 
Synchronous data flow (SDF) emerged as a simple yet powerful abstraction to model 
signal processing applications especially for energy efficient design using power aware 
embedded systems. SDF specifies an application as a directed acyclic graph where the 
nodes model the application tasks and the edges model the order of execution among the 
tasks. SDF allows efficient scheduling of application tasks via topological sorting of the 
task graph while exploiting available parallelism. In order to support low-power design 
our target processing and memory devices supported a number of operating states. 
Therefore, during application design, it is required to identify the most suitable operating 
state for an application task while meeting given performance constraints. This requires 
operating state transition between successive task executions. SDF emerged as a suitable 
model that was easily extended to model operating state transition. SDF was also well 
suited for design space exploration using DESERT, performance evaluation using 
HiPerE, and automatic high-level code generation. For the MILAN design environment, 
SDF was also extended easily to support a hierarchical modeling that allowed user-
friendly graphical interface towards application modeling. A variant of SDF, 
asynchronous data flow (ASDF) was also supported by MILAN. Both SDF and ASDF 
combined have proved to be simple yet powerful abstractions to model a wide variety of 
signal processing applications especially used in the defense community.  

3.2 Simulator integration 
The main focus of the MILAN project was to develop a design environment that allowed 
integration of a wide variety of popular simulators suitable for embedded devices. A 
number of such simulators are available from academia and industry. Some examples are 
SimpleScalar, SimplePower, PowerAnalyzer, JouleTrack, ARMulator, Xilinx XPower, 
ModelSim, among others. The biggest concern while integrating these simulators is lack 
of a standard interface and difference in simulation speed. Therefore, it is a very difficult 
task to integrate these simulators in a manner that they interact with each other to 
estimate system-wide performance for a heterogeneous embedded system that integrates 
several processing and memory devices. Therefore, MILAN project has developed a 
hierarchical simulation technique [26]. Hierarchical simulation relies on a high-level 
performance estimator (HiPerE) to generate system-wide performance estimates by 
integrating components specific performance estimates generated using the 
aforementioned simulators. Thus HiPerE hides the lack of common interface and 
difference in speed among the low-level simulators. MILAN, through the use of GME, 
allows integration of individual simulators that are driven by the models supported by 
MILAN. Thus, given appropriate high-level code and input stimuli for an application 
task, simulation can be automatically performed and the component specific performance 
estimate can be automatically updated in the MILAN models. HiPerE uses the updated 
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models to generate system-wide performance estimates. Use of HiPerE also allows reuse 
of component specific performance estimates. 

3.3 Device selection 
The MILAN project studied the problem of device selection. This problem assumes that 
the target application is specified but the target hardware is not specified. Instead a 
number of processing and memory devices are available which should be evaluated to 
identify a suitable combination of devices that meet the functional and performance 
requirements. Other aspects that can be considered are size, cost, and weight. Device 
selection is a larger problem (with respect to design space) than application mapping and 
scheduling as device selection includes mapping and scheduling while evaluating a 
number of devices, which significantly increases the design space. MILAN is able to 
evaluate a given set of devices due to its support for simulator integration (for each 
candidate device) and availability of HiPerE. Device selection also requires design 
constraints in addition to performance constraints. Design constraints specify valid 
combination of devices. For example, a designer may not want to choose a target 
heterogeneous embedded system, which integrates 2 FPGAs but would want 1 FPGA 
with a general purpose processor. MILAN supports object constraint language (OCL). 
OCL was identified as an efficient technique to specify design constraints and our design 
space exploration tool, DESERT, could support design space exploration based on design 
constraints without any modification. 

3.4 Hierarchical design space exploration 
MILAN supports hierarchical design space exploration which integrates a pruning 
heuristic followed high-level estimation and low-level simulation. The primary difference 
between our version of a pruning heuristic and the traditional version of optimization 
heuristics is generation of a set of designs as opposed to a single optimal design. The set 
of designs consists of the designs that meet the given performance constraints. By 
ensuring that we have a set of good designs as opposed to one optimal design, we 
increase the chances of finding the real-optimal design from the set even when 
approximated high-level models are used. An optimal design is the best design identified 
(based on the performance requirements) by the optimization heuristic using the 
underlying approximated high-level model.  A real-optimal design is the design that is 
optimal when the designs are implemented using hardware and performance is measured. 
A real-optimal design can be different than the design identified by the optimization 
heuristic because the later assumes a high-level approximated model with lower 
parameter coverage. For ease of comparison, we assume that the most detailed low-level 
simulator available is accurate and can be used to identify the real optimal solution. We 
also assume that the errors induced by approximations are marginally low when 
compared with the actual performance values. Hierarchical design space exploration is 
robust against approximation errors due to high-level abstractions (models) used by the 
optimization heuristics and reduces the number of simulations necessary when compared 
against simulation based design space exploration. Hierarchical design space exploration 
allows a designer to potentially combine different pruning heuristics and high-level 
estimators to suite the need of target application design problem domain. 
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3.5 Duty cycle based design space exploration 
Duty cycle is the proportion of time during which a system is operated. Such 
specification allows modeling of a period of execution as alternate active and inactive 
phases.  Energy dissipation (e.g. due to leakage current), especially for systems with low 
duty cycle, during the inactive phases can contribute significantly to the overall energy 
dissipation of the system. Therefore, the tradeoff between the performance cost of 
shutting down and starting up a device and the performance cost of remaining idle needs 
to be considered during system design. HiPerE, a high-level performance estimator 
integrated in the MILAN framework allows performance estimation and design space 
exploration based on duty cycle specification. 
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4 Technology Transition 
The MILAN environment has been used for several different projects. By the time this 
document was produced, there have been approximately 240 unique downloads (see 
Appendix) of the MILAN framework. We briefly discuss two projects in this section. 

4.1 Power Aware Remote Information System (PARIS) 
The focus of the PARIS project is to identify an energy efficient implementation of a 
personnel detection algorithm. The personnel detection algorithm is required to processes 
input in real-time and hence there is a hard latency requirement. In addition, as the 
system needs to be deployed in a power-constrained environment, energy dissipation is 
also an important metric. We used MILAN to identify an energy efficient hardware and 
the corresponding mapping for the above algorithm from a set of devices that consists of 
traditional processors, FPGAs, and DSPs. 
 
Using MILAN, we modeled the application (a 5 stage linear array of tasks) and the 
candidate hardware choices. The PARIS application is a multi-rate application like the 
beamforming algorithm discussed earlier. Resource modeling for PARIS involved 
modeling of different operating states, performance cost of state transitions, and power 
consumption for each state. We also performed several simulations to estimate the 
performance values associated with the mappings of the application tasks and the target 
hardware devices. PARIS project allows only certain combination of devices. These 
design constraints were specified using OCL. We also evaluated both floating and fixed-
point implementation for each application task. The size of the design space prior to the 
use of DESERT was approximately 73,000. 
 
Following modeling, we performed a two-level design space exploration using DESERT 
and HiPerE. DESERT cannot evaluate designs based on duty-cycle specifications. 
However, it is not practical to use simulation to evaluate 73,000 designs. For example, 
simulation of a design using TI Code Composer Studio (for DSP) takes approximately 
25-30 minutes. Even with HiPerE, it takes approximately 10 hours to estimate the 
performance of all the designs and a tedious manual comparison of all the estimates to 
identify the energy efficient design. Therefore, DESERT is used to evaluate the large 
design space based on the latency requirement. We initially assumed a constant rate 
application model and evaluated all the target hardware for a single instance of execution 
of the application. Later, we used HiPerE to evaluate the designs identified by DESERT. 
Evaluation of the designs using HiPerE was based on duty-cycle specification and the 
design with minimum energy dissipation was selected as the final design and the 
associated architecture was identified as the target architecture. 
 
Initially, DESERT identified two candidate architectures, Virtex-II Pro and a 
combination of Actel ProASIC and TI DSP. Virtex-II Pro based designs were more 
efficient in terms of latency and energy both for a single instance of execution. However, 
based on duty-cycle specifications (which evaluates a design over a period of time that 
includes, data processing and idling or shut-down and start-up), the combination of Actel 
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ProASIC and DSP turned out to be more efficient. This is because Virtex-II Pro has a 
very high quiescent power and start-up cost.  

4.2 Power Aware Sensing and Tracking Analysis (PASTA) 
The PASTA application design problem is to identify an energy efficient mapping of a 
automated target recognition (ATR) application onto a heterogeneous embedded system 
while meeting the given latency constraint. The underlying architecture for the PASTA 
project is already specified (http://pasta.east.isis.edu).  
 
The hardware includes sensor(s), a processor, several microcontrollers, memories, and a 
radio. Each component can be independently turned on or off. In addition, the processor 
(Intel PXA 255) supports voltage and frequency scaling. The target application is an 
automated target recognition algorithm that performs beamforming based on acoustic 
signals from the sensors. The beamforming application consists of a linear array of 6 
tasks. The first three tasks are “receive data” which is mapped onto the radio, “sampling” 
which is mapped onto the microcontroller, and “false-alarm detection” which can be 
mapped onto either the microcontroller or the processor. The last three tasks that compute 
beamforming are FFT, peak-pick, and delay sum. 
 
The design problem for PASTA involves identification of the operating state of each 
component for each task such that the complete ATR application dissipates the minimum 
energy while satisfying the latency requirement. All the components in the PASTA stack 
have at least two operating states; ON and OFF. There is a constant amount of time and 
energy spent to switch on each component. In addition, the processor has 6 different 
operating frequencies. Tasks can be mapped onto the processor or the microcontroller. 
When mapped onto a processor, the task can be executed in a certain operating state and 
the performance of the mapping depends on the operating state. Transition between any 
two operating states also involves time and energy costs which depend on the source and 
destination states. We modeled all the above in MILAN. The resulting design space was 
approximately 500,000. However, we noticed that the transition costs between different 
operating states of the processor are negligible except one transition, which involves 
changing operating frequency of the bus. Hence, the design space was reduced to 12,000. 
As with the other examples, we used simulators for Intel PXA 255 and the 
microcontroller to estimate performance of all the mappings. The start-up costs and state 
transition costs are estimated based on the data sheets provided by the vendors. 
 
Design space exploration involved DESERT and HiPerE. For design space exploration, 
the latency constraint was assumed to be < 1 sec. DESERT initially pruned the design 
space to 10 designs based on the latency constraint. DESERT does not include the 
performance of the sensor, radio, and the memory while evaluating the design space. 
Hence we used HiPerE to identify the design with minimum energy dissipation. In the 
resulting design, the components, which are idle, are switched off. For example, while the 
radio is receiving data, the processor is turned off and is turned on only when data is 
ready for processing. The design also maps the false-alarm detection task onto the 
microcontroller, as while latency is higher compared with the PXA processor, energy 
dissipation is lower. 
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